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Deterministic Chaos and Natural Phenomena 
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The natural time series foF2, F10.7, and AE are analyzed and low-dimensional 
attractors are found, characterized by the correlation dimension and the lower 
bound of the Kolmogorov entropy. Sources of noise in natural time series are 
discussed and the concept of extended systems is introduced and used to explain 
why the number of data required to calculate the correlation dimension of 
natural time series is higher than that reported by other authors. 
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1. I N T R O D U C T I O N  

The vast majority of published literature on chaos is concerned with 
numerical or laboratory experiments, in spite of the professed belief that 
natural phenomena are nonlinear. Among the few exceptions are papers by 
Nicolis and Nicolis, (1) Kurths, (2) and Romanelli et al. ~3) 

In this paper we present some results on natural time series and 
explain some of the difficulties associated with them. 

2. DATA PRESENTATION 

We shall discuss three different types of natural time series. They are: 
foF2 : Hourly values of the ionospheric critical frequency. This value is 

obtained from continuous measurements and pertains to a particular time 
and place. 

F10.7: Daily values of solar radio flux at 10.7 cm. This value is 
representative of the daily solar activity. It is thus an integration of 
phenomena in the visible side of the sun as received on earth during a day. 
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AE: Auroral electrojet activity is defined by Davis and Sugiura ~4) as an 
index obtained from geomagnetic data of selected sites of the northern 
hemisphere that is considered to give a reliable auroral activity information 
on global scale. In our case, it is an hourly average related to the deviation 
of the horizontal component of the geomagnetic field. 

Some difficulties associated with these time series are: 
(a) Sampling period: generally lower than one sample per hour. As a 

consequence, relatively short series may take a long time to obtain, giving 
rise to questions of whether the (generally unknown) parameters that 
control the phenomena may have changed during the period of 
observation. 

(b) Noise: These data include noise arising from different sources. 
(i) Measurement errors: typically of the order of 1%. This is 

equivalent to roundoff error in the data obtained from numerical 
experiments. 

(ii) Transmission error: that added to a measured signal between the 
phenomena and the observer. For example, in the case of F10.7, the 
phenomena occur in the sun and are measured on earth. This error is 
equivalent to adding random noise to numerical experiments data. 

(iii) Intrinsic noise: when dealing with extended systems such as those 
dealt with in this paper, they should be considered as a collection of similar 
dynamical subsystems, each one contributing with "noise" (due to the 
phenomena themselves) and their random superposition. 

(c) Nonrepeatability of the observations. 
Other related problems are: missing observations, nonavailability, etc. 
In order to determinate if the variability observed in the data 

corresponds to deterministic behavior in its origin or may be attributed to 
random noise, we have analyzed the natural time series mentioned above. 

If deterministic chaos is observed, this result is useful because it shows 
that nonlinear equations are necessary to model the system and puts an 
upper bound on the number of them. 

3. M E T H O D  OF A N A L Y S I S  

When analyzing experimental time series most of the N variables of 
the system under study are usually unknown or unavailable. Therefore, 
the question is whether and how it is possible to substitute the missing 
information. 

Takens ~5) has found that instead of X(t) and its derivatives, it is easier 
to work with X(t) and the set of variables obtained by shifting the original 
series by fixed lags or delay time T. This provides enough information to 
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reconstruct, from a one-dimensional space, a multidimensional phase space 
of the dynamical system. 

It is interesting to reconstruct the phase space because the nature of 
the attractors provides information on the time behavior of the variables 
and on the nature of their coupling. 

It is necessary now to characterize the complexity of the dynamics 
more precisely and, in particular, discriminate whether the observed 
fluctuations in the data are due to random noise or belong to some deter- 
ministic behavior. 

The structure of the attractor is inferred from the correlation dimen- 
sion and the entropy K2. (6~ The so-called integral correlation function 
Cd(r) is given by 

Cd(r) = (1/N 2) ~ O ( r - I x , ( t ) -  xj(t)l) 
i r  

for a d-dimensional space, where 0 is the Heaviside function, N is the total 
number of data, and X~ stands for a point of phase space. The integral 
Ca(r), for small r, scales as Cd(r) '~ r ~. From the slopes of the log-log plots 
of Ca(r) versus r for different values of d, values of v as a function of d can 
be derived. The saturation value of the v versus d plot is the correlation 
dimension Dc. 

If Xi is random noise, the correlation integral scales as Cd(r) ~ r d and 
there is no saturation. 

A lower bound of the Kolmogorov entropy K2 is found from 

K2(r ) = (I/z) log[Cd(r)/Cd+ l(r)]  

K2 > 0 for deterministic chaos. If the system evolves periodically, /'22 = 0 
and for stochastic systems, K2 = oo. 

It is an open question what is the minimum amount of data required 
for the Grassberger-Procaccia method to work. 

Several authors (6'7) say that N should be very large. But Abraham 
et al. ~8) have done numerical experiments and found that 600 data points 
are enough to obtain reasonable results. The results of a previous work by 
Romanelli et at. (3) indicate that when dealing with natural time series about 
1700 data points are required. We believe that the difference in the number 
of necessary points can be found in the fact that our natural series 
originated in extended sources, as was discussed in Section 2. 

4. RESULTS 

The series used in this work are: 
(a) Hourly values of the ionospheric critical frequency foFz  for 

Argentine Island (65.25~ 64.27~ for the years 1977-1978. 
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Table I. 

Parameter  

R o m a n e l l i  e t  al. 

Characteristics of the Time Series Analyzed and the Values 
of the Dimensions Found 

Sampling Data  points D c K 2 

F10.7 Daily 1,826 3.5 0.07 
AE Hourly 2,928 3.3 0.08 

foFz Hourly 17,280 3.4 0.04 

(b) Daily values of solar flux at 10.7 cm from January 1973 to 
December 1977. 

(c) Hourly values of the auroral geomagnetic index AE from 
September to December 1983. 

The values obtained for the correlation dimension Dc are given in 
Table I. It can be seen in that all cases we are in the presence of chaotic 
attractors. 

It may be surprising at first glance that similar results are obtained 
from different physical phenomena, but this is due to the fact that these 
systems are closely related to the Navier-Stokes equations. 

Therefore we conclude that in the three types of natural time series we 
have analyzed, low-dimensional chaotic attractors are present, and in all 
cases four equations are needed in order to model the system. 

Natural phenomena have to be considered as a collection of dynamical 
chaotic subsystems. The theoretical treatment of such systems is the object 
of future work. 
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